Interne Ini-Datei der Modelle: Unterschied zwischen den Versionen

Aus EEP Wiki
Wechseln zu: Navigation, Suche
(Modell (Rendering etc.))
(Allgemeine Information zur Eingabe von Werten: Kommentarfunktion eingefügt)
Zeile 13: Zeile 13:
 
* Zeichenkette [String]: "EEXP\Roll_Feuerwehr.wav"; "FRAME"; "_Sys_StartWalk" (in Anführungszeichen schreiben)
 
* Zeichenkette [String]: "EEXP\Roll_Feuerwehr.wav"; "FRAME"; "_Sys_StartWalk" (in Anführungszeichen schreiben)
 
* <code>##</code> steht für einzusetzende Ziffern, wobei die Anzahl der Rauten die Anzahl der Ziffern angibt.
 
* <code>##</code> steht für einzusetzende Ziffern, wobei die Anzahl der Rauten die Anzahl der Ziffern angibt.
 
+
* Kommentare beginnen in der ini-Datei mit einem Semikolon und können mit Abstand von einem Leerzeichen auch hinter Parametern gesetzt werden (z.B.: <code>ControlNs1 = 47 ; Kommentar Achse 47 (Luftsteuerung) Als Kontrollachse fuer NonstopIf1</code>
 +
<br>
 
Bei allen Befehlen/Parametern muss Groß-/ Kleinschreibung beachtet werden.  
 
Bei allen Befehlen/Parametern muss Groß-/ Kleinschreibung beachtet werden.  
 
Die Auflistung enthält die Werte für EEP ab Version 13. Frühere anders lautende Befehle, Parameter und Attribute sind hier nicht berücksichtigt.
 
Die Auflistung enthält die Werte für EEP ab Version 13. Frühere anders lautende Befehle, Parameter und Attribute sind hier nicht berücksichtigt.

Version vom 15. August 2017, 14:07 Uhr

Die interne Datei System.ini legt Funktionen und Systemeinstellungen für das betreffende Modell fest. Diese reichen von der Festlegung der Antriebskonfigurationen, des Gewichts und Bremsverhaltens über Kabinenansichtsparameter bis hin zu Rauch-, Feuer-, Staub-, Wind- und Sound-Zuordnungen.

Allgemeine Information zur Eingabe von Werten

Grundsätzlich beginnt jeder Abschnitt in der internen ini-Datei mit einer Überschrift, die in eckigen Klammern steht. In der Tabelle stehen zunächst diese Überschriften und nachfolgend die jeweiligen möglichen Parameter.

Die Schreibweisen zu den Werten sind:

  • Ganze Zahlen [Integer]: -2; 0; 34
  • Fließkommazahlen [Float]: 4.1; 3.0; -100.53 (als Dezimaltrenner den Punkt [.] verwenden)
  • Hexadezimale Zahlen; Farbwerte im 16-Bit-Format [HexRGB] mit dem Prefix 0x: 0x4832a0; 0xa0b0f0
  • Hexadezimale Zahlen; Farbwerte plus Alpha-Kanal im 16-Bit-Format [HexARGB]: 0x30ffffff; 0x80a0b0f0
  • Zeichenkette [String]: "EEXP\Roll_Feuerwehr.wav"; "FRAME"; "_Sys_StartWalk" (in Anführungszeichen schreiben)
  • ## steht für einzusetzende Ziffern, wobei die Anzahl der Rauten die Anzahl der Ziffern angibt.
  • Kommentare beginnen in der ini-Datei mit einem Semikolon und können mit Abstand von einem Leerzeichen auch hinter Parametern gesetzt werden (z.B.: ControlNs1 = 47 ; Kommentar Achse 47 (Luftsteuerung) Als Kontrollachse fuer NonstopIf1


Bei allen Befehlen/Parametern muss Groß-/ Kleinschreibung beachtet werden. Die Auflistung enthält die Werte für EEP ab Version 13. Frühere anders lautende Befehle, Parameter und Attribute sind hier nicht berücksichtigt.

Übersichtstabelle

Die folgende Tabelle ist derzeit in Überarbeitung. Wenn jemand Fehler entdeckt oder Ergänzungen vornehmen möchte, bitten wir freundlich um Nachricht per PN im Forum an die das Home-Nostruktor-Wiki-Team.


Legende

Bezeichner

zugelassene Parameter / Beispielwerte

Beschreibung
Parameter Bezeichnung des Parameters - steht links neben dem Gleichheitszeichen
0.0 - ∞ Wertebereich
In diesem Fall dürfen ganze Zahlen im Bereich von 0.0 bis unendlich eingetragen werden. Die Werte müssen mindestens eine Nachkommastelle enthalten.
= 0.0 Beispieleintrag
Wenn der Eintrag mind. eine Nachkommastelle hat, muss auch mindestens eine Nachkommastelle angegeben werden.
Wenn keine Nachkommastelle vorhanden ist, dürfen nur ganze Zahlen eingegeben werden.
= 0 Vorgabewert (Default)
Wenn der Parameter nicht in der internen Ini eingetragen ist gilt dieser Wert.
Beispielprojekt: Immobilien\Swing

Die Beispielprojekte befinden sich im Ordner Projects des Home-Nostructor im angegebenen Pfad.


Allgemeines

Überschrift: [System]

Bezeichner

zugelassene Parameter / Beispielwerte

Beschreibung
ModelType = 0x0000 Legt fest, dass diese Datei HEX-codiert sein wird (in der 3dm-Datei).

Dieser Wert ist die Standardvorgabe und darf nicht entfernt oder verändert werden.


Modell (Rendering etc.)

Überschrift: [Model]

Allgemeine Eigenschaften des Modells und dessen Achsen

Bezeichner

zugelassene Parameter / Beispielwerte

Beschreibung
  Rendering - Anweisungen
SortByAxes -2, -1, 0, 1, 2
= 0
Reihenfolge des Renderings der Achsen des Modells sowie eventuelle typ-sortierte Gruppierung
Wird bei transparenten Flächen wie z.B. Glasscheiben verwendet.

Bewirkt unabhängig vom Aufbau des Modells, dass die beweglichen Modelle hinter durchsichtigen Scheiben sichtbar werden.
Gilt in allen folgenden Fällen: Die Scheibe liegt...

  • ... in der Basis.
  • ...auf einer Zusatzachse.

Die Scheibe hat...

  • ...kein Backface-Culling.
  • ...doppelte Polygone mit Backface-Culling.

Beispiel 1: Bei einer E-Lok/Triebwagen/Straßenbahn können zwei Lokführer, die auf Achsen sitzen, je nach Fahrtrichtung erscheinen bzw. verschwinden.
Beispiel 2: Im Innern einer Immobilie bewegt sich eine Rolltreppe o. ä.
Anmerkung: Dieser Befehl wird ausschließlich in Modellen benutzt, die tatsächlich über durchsichtige Scheiben und bewegliche Achsen-Modelle hinter den Scheiben aufweisen, da er die übliche Rendering-Kette unterbricht und das Modell (3dm) nach einem anderen (durch den Konstrukteur vorgegebenen) Renderingprinzip berechnet.
Beispielprojekt: Technik\Velocity_speedometer_test, Cabins\CabinControlsExample_BR232

Wert

Effekt

      0 Vorgabewert
Die Reihenfolge des Renderings bleibt unverändert und die Modelle werden nach diesem Muster berechnet: [Backface-Culling], dann [Backface-Culling + Z-Offset], dann [kein Backfaceculling] und schließlich [kein Backface-Culling + Z-Offset].
      1 Die Reihenfolge des Renderings entspricht derjenigen der Achsen, wobei mit der Basis des Modells begonnen wird.
      2
     -1 Wie 1, jedoch in umgekehrter Reihenfolge (also von hinten nach vorne). Damit wird die Basis das zuletzt gerenderte Modell.
     -2 Die Reihenfolge wird gegenüber der normalen Rendering-Folge umgekehrt. Es werden zunächst die Teile mit [kein Backface-Culling + Z-Offset], dann [kein Backfaceculling], dann [Backface-Culling + Z-Offset] und zuletzt [Backfaceculling] gerendert.
SortToViewer 0, 1
= 0
Aktiviert die Sortierung des Renderings anhand der Entfernung zur Kamera
Normalerweise rendert EEP in der Reihenfolge der Achsen (Objekte). Die Sortierung anhand der Entfernung erlaubt zwar die korrekte Darstellung von anderen Modellen/Objekten hinter transparenten Flächen, wirkt sich jedoch negativ auf die Effizienz des Renderings aus und ist nur bei Objekten mit größeren Glasflächen zu empfehlen, wie z.B. bei Bussen oder komplett verglasten Wänden.
0    (Vorgabewert) Sortierung nach Entfernung zu Kamera ist ausgeschaltet
1    Sortierung nach Entfernung zu Kamera ist eingeschaltet
Beispielprojekt:Technik\cube_transp
SortToViewerLevel 0, 1, -1
= 0
Erhöht die Priorität beim Rendering anhand der Tiefe
Wichtig im Falle von Schwierigkeiten bei der Festlegung der Rendering-Reihenfolge. Die erzwungene Priorität wirkt sich negativ auf die Effizienz des Renderings aus. Objekte mit einem höheren Wert des Parameters werden später berechnet, was so viel heißt, dass sie ein geringeres Fehlerpotenzial aufgrund von Transparenz aufweisen.
  Achsen - Parameter (allgemein)
AnimSwitch## = 0 Verknüpfung der Bewegung der Achse ## mit dem Schaltzustand = 0 einer Weiche
Die Änderung der Weichenstellung bewirkt eine Bewegung der Achse zwischen ihrem Minimal- und Maximalwert.
Dieser Parameter ist ausschließlich für Weichen zu verwenden.
BreakAxis## -∞ bis +∞
= -100= 0
Gibt die Anzahl der Hub-Sprünge einer Achse mit der Nummer ## an, sobald die Achse in EEP angeklickt wird

Dieser Wert gilt für bewegliche Achsen in Immobilien und Gleisobjekten (z.B. Türen).
< 0: Deaktiviert die Möglichkeit zum Bewegen der Achse im Kabinenmodus (nur bei Objekten vom Typ Rollmaterial).
-10000.0: Bewirkt eine dauerhafte Bewegung der Achse (anzuwenden bei Immobilien und Gleisobjekten). Klickt der Anwender auf diese Achse, so vollzieht diese eine kontinuierliche Bewegung, sobald der Arbeitswinkel mehr als 358° beträgt. Anderenfalls vollzieht die Achse eine Pendelbewegung zwischen dem Minimal- und Maximalwert (vorwärts und rückwärts). Kann z.B. beim Nachbau einer Schaukel angewendet werden.
Beispielprojekt: Immobilien\Swing

ControlNs# 1 - 99
= 1
(Nr. der Steuerachse)
Beschreibt die Steuerachse = 1 für die Systemachse _NonstopIf#
Der Grad der Auslenkung der Achse mit der angegebenen Nummer # bestimmt die Drehgeschwindigkeit der Systemachse _NonstopIf#. Sofern die Steuerachse nicht vorhanden ist bzw. nicht definiert wurde, wird sich die Systemachse _NonstopIf# kontinuierlich drehen, wie z.B. die Systemachse _Nonstop.


Beispielprojekt: Technik\Wind_Power

DoorAxis 0, 1
= 1
Kollisionsprüfung des Gleisobjekts
Ein Gleis wird automatisch blockiert wird, sobald die Achse X (sichtbar im 3D-Fenster des Home-Nostruktor nach dem Einblenden von Anzeige - Achsen) durch irgendeine bewegliche Achse des Modells berührt bzw. durchdrungen wird. Dies kann z.B. bei den Toren eines Lokschuppens auftreten.
Dieser Parameter ist ausschließlich bei Gleisobjekten anzuwenden.
1    (Vorgabewert) Kollisionsprüfung ist eingeschaltet
0    Kollisionsprüfung ist ausgeschaltet. Das Objekt kann jederzeit befahren werden


Beispielprojekte:Technik\Farm_GenericField

SmoothAxis## 0, 1
= 0
Schaltet Glättung der Achsenbewegung für die Achse ##
Vorgabewert: 0 (aus)


Beispielprojekt:Technik\Velocity_speedometer_test

SoundAxis## = "EEXP\turn1.wav" Sounddatei für Achse ##
Die angegebene Sounddatei wird während der Achsenbewegung abgespielt. Der Text beschreibt den Pfad der Tondatei im Ordner Resourcen/Sounds, hier "EEXP\turn1.wav".
Beispielprojekt:Technik\conveyor_anim
VelocAxis## 0.0 - ∞
= 0.05
= 0.2
Multiplikator der Geschwindigkeit der Achsenbewegung der Achse ##
Werte oberhalb von 0.2 beschleunigen die Bewegung, Werte darunter verlangsamen sie.
Nützlich ist diese Funktion, um z.B. die Drehgeschwindigkeit von Rädern mit der horizontalen Bewegung von Achsen zu synchronisieren. Dieser Parameter kann auch z.B. für die Geschwindigkeit von Schrankenbäumen, Toren etc. verwendet werden.
Beispielprojekte:Technik\Alarm; Technik\Velocity_speedometer_test
TextureAxis## Textur-ID
= 0
Definition einer Steuerachse für animierte Texturen
Damit die Definition möglich ist, muss die Textur in der Datei „Texturen.txt“ als animierte Textur vordefiniert werden (z.B. mit "animfrm_y(4) animfps(1.0) ).
Für die kontinuierliche Bewegung der Animation sollte die Steuerachse als „_Nonstop“ Systemachse ausgeführt werden.
Beispielprojekte:Technik\conveyor_anim
VolumeAxis## 1 - ∞
= 20
Rest-Lautstärke des abgespielten Geräusches der Achse##
Dieser Wert beschreibt den Abstand der Quelle des Geräusches bis zum Zuhörer (in Metern), in dem die Lautstärke des Geräusches noch zu 100% gehört werden kann. Erst ab dem vordefinierten Abstand fällt die Lautstärke ab und das Geräusch wird leiser.
Beispielprojekte:Technik\conveyor_anim


  weitere Einstellungen (alphabetisch sortiert)
CrossAutoChangeTime 0.0 bis ∞
= 10.0
Standardzeit der Ampelphasen von Kreuzungen
Dieser Wert kann durch den Benutzer in EEP geändert werden.
CtrlLightIdx 0, 2-28
= 0
Berechnung der Helligkeit von Licht
Dieser Parameter schaltet die Berechnung der Beziehung zwischen Helligkeit einer bestimmten Licht-ID und der Helligkeit der Tageszeit. Je näher/kürzer bis Mitternacht, desto heller das Erscheinungsbild der Licht-ID. Am Tage (um die Mittagszeit) wird das Licht einer Licht-ID dagegen automatisch gedämpft.
Hinweis: Pro Modell ist nur eine Licht-ID möglich.

Wert

Zweck

Wert

Zweck

Wert

Zweck

      0  Vorgabewert      10  Signal #6 rot hinten      20  Blinklicht 0.5s (aus)
     11  Signal #7      21  Blinklicht 0.5s (an)
      2  Rücklichter von Fahrzeugen      12  Signal #8      22  Blinklicht 0.25s (aus)
      3  Fenster von Fahrzeugen      13  Signal #9      23  Blinklicht 0.25s (an)
      4  Immer an      14  Signal #10      24  Blinklicht 0.125s (aus)
      5  Signal #1 Lichtkegel vorne      15  Licht in Immobilien      25  Blinklicht 0.125s (an)
      6  Signal #2 Lichtkegel hinten      16  Blinklicht 2s (aus)      26  Richtungsblinker links
      7  Signal #3 weiße Lampen vorne      17  Blinklicht 2s (an)      27  Richtungsblinker rechts
      8  Signal #4 weiß hinten      18  Blinklicht 1s (aus)      28  Stopplicht
      9  Signal #5 rot vorne      19  Blinklicht 1s (an)
DisableClick 0, 1
= 0
Schaltet die Reaktion des Objektes auf einen Klick seitens des Users aus
Dieser Parameter kann bei allen Objekten angewendet werden.
0    (Vorgabewert) Ausgeschaltet (Objekt reagiert auf Klick)
1    Eingeschaltet (Objekt reagiert NICHT auf Klick)
EnableFire 0, 1
= 0
Aktivierung der Funktion Feuer.
Dieser Wert gibt an, ob der Emitter des Feuers standardmäßig aktiviert werden soll. Er gilt für Objekte der Typen Immobilie, Gleisobjekt und Landschaftselement.
0    (Vorgabewert) aus
1    ein
EnableSmoke 0, 1
=0
Aktiviert die Funktion Rauch als Standard
Mit diesem Wert kann die Rauchfunktion als Standardwert eingeschaltet werden, dass heißt, der Nutzer sieht den Rauch auch ohne ihn explizit einzuschalten. Sinnvoll ist dies z.B. bei Schornsteinen und in Verbindung mit EnableFire = 1
Er gilt für Objekte der Typen Immobilie, Gleisobjekt und Landschaftselement.
Der Nutzer kann die Funktion in den Objekteigenschaften ausschalten.
0    (Vorgabewert) aus
1    ein
Hinweis: Die Parameter für die Erscheinung des Rauchs sind unter #Rauch.2FFunken.2FSchutt_-_allgemein zu finden.
HorizonV 0.= - 1.0
0.0,0.25,0.5,0.75,1.0
Bestimmung der horizontalen (!) Schnitte einer Horizont-Textur, um diese als eine lange Rundum-Textur darzustellen
Die derartige Anordnung der Texturfragmente (Streifen) ermöglicht eine optimale geometrische Form einer Textur, nämlich die eines Quadrats. Die Werte 0.0, 1.0 bedeuten keine Teilung der Textur, wogegen die Werte 0.5, 1.0 zwei Texturstreifen beschreiben, die genau in der Mitte geteilt sind.
Bei einem einfachen Hintergrund ist die Textur 4096px x 256px groß (mit Alphakanal, der auch für die sanfte Ausblendung nach unten sorgt). Bei 360°-Panoramen sind 4 Horizontstreifen übereinander gestapelt. Dies ergibt eine Texturgröße von 4096px x 1024px.
Hinweis: Durchsichtige Teile der Textur durchsichtig werden in EEP nicht angezeigt. Auf diese Weise ist es möglich, eine Anlagenseite leer zu lassen.
Beispielprojekt: Horizon


ModelInfoTip 0,1
=0
Deklariert ein Modell als Informationsmodell
Dadurch können z.B. Texte eingeblendet werden, die in der 3D-Darstellung zu sehen sind, sobald sich der Anwender dem Objekt nähert.
0    (Vorgabewert) aus
1    ein
SwissClock 0, 1
= 0
Schweizer Bahnhofsuhr
Dieser Wert ermöglicht den Nachbau von Bahnhofsuhren nach schweizerischem Vorbild. Dabei wird die Systemachse „_TimerS“ (Sekundenzeiger) für einen Moment angehalten, sobald die volle Minute erreicht ist (mit dem sogenannten Minutensprung).
0    (Vorgabewert) aus
1    ein
Beispielprojekt: Immobilien\Bahnhofsuhr_eckig-01_NP1
WaveMaxBias 0.0 bis 0.5
= 0.25
Maximale Verschiebung in der Mischung von Texturkomponenten in der Wassertextur
Während der Animation bei der Mischung der beiden Komponenten ändert sich das Aussehen der Oberflächenstruktur des Wassers und ähnelt damit mehr entweder der ersten oder der zweiten Textur.
Je höher diese Parameter, desto größer ist die Ähnlichkeit zu dem Aussehen einer Textur-Komponente. Bei einem Wert von 0.0 werden beide Texturen gleichmäßig zu Hälfte gemischt.
Beispielprojekt: Technik\Water_Scale
WaveScaleXYXY = 1.0,1.0,1.0,1.0 Skalierung der Textur des Wassers ohne bewegliches Drahtgittermodell
WindPower 0.0 bis 1.0
= 0.0
Bestimmt den Einfluss des Windes auf das Landschaftsobjekt


Fahrzeug

Überschrift [Vehicle]

Parameter für jedes Rollmaterial (angetrieben und nicht angetrieben)

Bezeichner

zugelassene Parameter / Beispielwerte

Beschreibung
BackBumper = 800.0 Länge vom der Nullpunkt des Koordinatensystems (Ursprung) bis zur Außenkante der hinteren Puffer in cm
Der Wert bestimmt, wann RM voneinander abgestoßen wird bzw. wo es kuppelt.
Box... BoxX+ = 900
BoxX- = 900
BoxY+ = 900
BoxY- = 900
BoxZ+ = 900
BoxZ- = 900
Die Boxwerte beschreiben einen quaderförmigen Raum, in dem die Lok unter allen Umständen bleiben muss
Werte mit einem + geben den Abschnitt auf der positiven, Werte mit einem - den auf der negativen Achse an. Die Werte selbst sind immer positiv und in cm angegeben.
Bei einer Bewegung von Achsen für Stromabnehmer, Radsätze etc. darf kein Modellteil den Boxbereich verlassen, da dies zu Darstellungsfehlern in EEP führt.
Drehungen der ganzen Lok werden dabei jedoch nicht berücksichtigt, hier wird der Kubus mitgedreht.
Hinweis: Der Wert darf nicht zu hoch bemessen werden, da dies die Performance in einigen Situationen erheblich beeinträchtigt. Es muss der kleinstmögliche Kubus festgelegt werden, in dem noch alle Modellteile in jedem Bewegungszustand Platz finden.
Breaks max. 99.0 ??
= 10.0
Die der Antriebskraft entgegenwirkende Kraft in kN
Die Reibungskraft bzw. der Rollwiderstand (andere Reibungskomponenten sind in EEP vernachlässigbar) entsteht durch die Reibung der Räder auf der Schiene/Fahrbahn.
Sie bewirkt, dass angestoßenes RM irgendwann zum Stehen kommen.
Hinweis: Waggons, die am Abrollberg gut abrollen sollen, müssen mit entsprechend kleiner Reibungskraft versehen werden.
DisableConnection 0 oder 1
= 0
Zustand der Kupplung (vorne und hinten) beim Einsetzen eines Rollmaterials
Die Kupplung wird durch den Wert 1 ausgeschaltet, also inaktiv.
Bei Rollmaterial auf der Schiene sind die Kupplungen immer scharf, also aufnahmefähig. Bei Kfz dagegen sind sie beim Einsetzen des Rollmaterials immer ausgeschaltet.
FrontBumper = 850.0 Länge vom der Nullpunkt des Koordinatensystems (Ursprung) bis zur Außenkante der vorderen Puffer in cm
Der Wert bestimmt, wann RM voneinander abgestoßen wird bzw. wo es kuppelt.
HangLength = 0.0 Länge des Pendels in Metern (nur für Pendelmodelle, z.B.Seilbahn)
Der Wert gibt die Länge des Pendels z.B. von der Seilrolle bis Unterkante Sessel eines Sessellifts an.
Hinweis: Die Schwinggeschwindigkeit eines Pendels ist nur von der Länge des Pendels abhängig, nicht jedoch von dessen Masse.
MaxBreaks = 132.0 Bremskraft
Maximale Stärke der Bremsen in KiloNewton (kN). Aus der Bremskraft wird der Bremsweg berechnet.
Pantograph1 = 3 Achsendefinition für Stromabnehmer
Die Ziffer (3 bzw. 8) ist die Achsennummer des Stromabnehmers.
Pantograph2 = 8 Dieser Wert legt fest, dass diese Achse ein Stromabnehmer ist
EEP kann man so einstellen, dass die Fahrzeuge nur dann fahren, wenn der Stromabnehmer oben ist. Es gibt nur die Betriebszustände: AN und AUS. Ist der Stromabnehmer nicht ganz ausgefahren (z.B. weil dieser so konstruiert wurde), übernimmt EEP den Zustand AUS auch für den Fall, dass der Stromabnehmer so aussieht, als sei er ganz ausgefahren. Das Speichern einer Zwischenposition macht keinen Sinn, weil man mit einem zur Hälfte abgesenkten Stromabnehmer nicht fahren kann.
SoundType 0 - 10
= 0
Typ-Definition des Rollmaterials und seiner zugeordneten Geräusch-Eigenschaften

RMTyp

Bezeichnung

Gegenverkehr

Kupplung vorne

Kupplung hinten

       0 Diverse (Waggon, Fahrrad, Fuhrwerk etc.)

nein

kuppeln

kuppeln

       1 Dampflok (Schlepptender)

nein

kuppeln

kuppeln

       2 Diesellok

nein

kuppeln

kuppeln

       3 Elektrolok

nein

kuppeln

kuppeln

       4 Strassen- und U-Bahn

nein

kuppeln

kuppeln

       5 Straßenfahrzeug

ja

abstoßen

abstoßen

       6 Maschine, Kran

nein

kuppeln

kuppeln

       7 Straßenfahrzeug für Güter (LKW)

ja

abstoßen

abstoßen

       8 Andere (Schiff, Flugzeug etc.)

nein

kuppeln

kuppeln

       9 Dampflok klein (Tenderlok)

nein

kuppeln

kuppeln

      10 Transrapid

nein

kuppeln

kuppeln

Weight = 100000.0 Masse des RMs in Kilogramm (kg)
Für diese Berechnungen ist die Verwendung des Gewichts an Stelle der Masse hinreichend genau. Der Wert spielt eine Rolle beim Abstoßen des RMs voneinander. Leichte Waggons werden stärker gestoßen als schwere. Des Weiteren bestimmt dieser Wert die Trägheit beim Beschleunigen und die notwendige Zugkraft bei Steigungen.
WindInfluence = 1.0 Wind-Einfluss (nur für Pendelmodelle, z.B.Seilbahn)
Drückt den Luftwiderstand des Modells aus und hat Einfluss auf dessen Pendelbewegung. Ist der Luftwiderstand des Modells klein (z.B. durch seine aerodynamische Form / kleine Angriffsfläche), so sollte der Wert des Parameters klein sein (z.B. 0.1).
Ist der Luftwiderstand groß, sollte der Wert entsprechend groß gewählt sein (z.B. 3.0).


Antrieb

[Vehicle_Motor] Motor { Motorparameter für angetriebenes Rollmaterial
Power = 3000.0 Leistung (999) Motorleistung in kW. Ist die Leistung nur in PS bekannt, kann sie mit Hilfe der folgenden Formel im kW umgerechnet werden: L [kW] = L [PS] * 0,7355
RatioValue_U1 = 900.0 Grenzdrehzahl_U1 (999) Gibt die Drehzahl in Umdrehungen pro Minute (rpm) mit maximalem Drehmoment an. U1 bestimmt den Schaltzeitpunkt des Getriebes im Automatikmodus. Beispielwert: 1000 rpm – Gibt den Punkt in Umdrehungen/Minute an, ab dem der Motor bremsend wirkt.
RatioValue_U2 = 2300.0 Grenzdrehzahl_U2 (999) Beeinflusst den Schaltzeitpunkt des Getriebes im Automatikmodus. Beispielwert: 5000 rpm – Gibt den Punkt in Umdrehungen/Minute an, ab dem der Motor bremsend wirkt.
RatioValue_U3 = 2500.0 Grenzdrehzahl_U3 (999) Beispielwert: 6000 rpm – ab U3 wirkt der Motor bremsend.
Skid = 0 ToterGang (n) Faktor für das Durchdrehen der Lokomotivräder bei Beschleunigung und Abbremsung. Werte für n: 0<=n<=1 (0= kein Durchdrehen, 1= volles Durchdrehen)
[Vehicle_Transmission] Getriebe { Getriebeparameter für angetriebenes Rollmaterial
Count = 4 Summe der Anzahl von Vorwärts- und Rückwärtsgängen (immer geradzahlig).
Gear1 = -8.40 Gang 1 {Uebersetzung (99)} Jeder Block namens „Gear“ definiert eine Fahrstufe des Getriebes. Der Wert des Parameters Uebersetzung gibt einen Faktor an, mit dem die Drehzahlen und Geschwindigkeiten sowie Drehmomente und Zugkraft errechnet werden. Die Fahrzeuggeschwindigkeit ergibt sich aus der Drehzahl und den Getriebefaktoren: v [cm/min] = (2 * ∏ * Treibradradius [cm]) / (Uebersetzung * Drehzahl [rpm]) v [km/h] = 0,0006 * v [cm/min]. Die Zugkraft ergibt sich aus folgender Formel: F [kN] = Uebersetzung * Drehmoment/TreibradradiusF [t] = ca. F [kN]/10. Die Formel für das Drehmoment bei U1 lautet: D [kN * m] = Motorleistung [kW] / (2 * ∏ * U1 [rpm]).
Gear2 = -16.700001 Gang 2 {Uebersetzung (99)}
Gear3 = 16.700001 Gang 3 {Uebersetzung (99)}
Gear4 = 5.60 Gang 4 {Uebersetzung (99)}
WheelRadius = 100.0 Treibradradius (999) Radius des angetriebenen Rades in Zentimeter.

Geräusche

[Vehicle_Sound] Sound Fahrzeuggeräusche (Signale, Dampf,Bremsen etc.) für Nicht-Standard-Geräusche.
Signal = "EEXP\WH_RL2_pfeife_gr1.wav" Sirene (xxx) Als Parameter sind der relative Pfad, ausgehend vom Verzeichnis resourcen\sounds\, und der Name der Sounddatei anzugeben, z.B. ( "EEXP\Pfiff.wav"). Der Sound kann für akustische Warnsignale auch durch Kontaktpunkte ausgelöst werden.
Steam = "EEXP\Abdampf1_RL2.wav" DampfSnd (XXX) Dampfgeräusch
Anfahr Geräusch beim Anfahren
Bremse Bremsgeräusch
Lauf Motorgeräusch
Rollen Rollgeräusch
Kurven Fahrgeräusch in Kurven

Kabinensicht

[Vehicle_Cabin] Kabin Direkter Blick aus dem Modell.
Pos = 1160.0,-60.0,280.0 Position der Kamera: x, y, z
AngleHor = 4.0 Blickrichtung horizontal beim Aktivieren der Kamera in Richtung x (0.00°).
AngleVer = 5.0 Blickrichtung vertikal beim Aktivieren der Kamera in Richtung x (0.00°).
AngleHorRange = 120.0 Bewegungswinkel der Kamera horizontal, bezogen auf die Blickrichtung.
AngleVerRange = 25.0 Bewegungswinkel der Kamera vertikal, bezogen auf die Blickrichtung.
Shake = 0.030 Schüttelwert; darf 0.03 nicht unterschreiten.

Rauch

Parameter für alle Rauchfunktionen (da alle Rauchfunktionen das gleiche Parameterset haben, werden im folgenden die einzelnen Rauchfunktionen und anschließend die zugehörigen Parameter gelistet). Für Rauch ist auch der Sektor Model_ParticleTex erforderlich.
[Vehicle_EngineSmoke_01] Rauch Rauch für Rollmaterialien (z.B. am Ejektor, an den Zylindern der Dampflok, Auspuff) in Abhängigkeit zur Antriebsgeschwindigkeit. Der Rauch ist an die Achse _Geschwindigkeit gekoppelt und zeigt beim reinen Rollen und im Stand auf Null gesetzt. Als Rauch werden Rauchwolkenmodelle benutzt, die von dem Fahrzeug an den Zylindern, Auspuff etc. ausgestoßen werden.

Beispiel im Projektordner des Home-Nostruktor unter Rollmaterial/Lokomotiven/DAMPFLOK_S3-6-RG

[Vehicle_Smoke_01] Rauch Rauchfunktion für Dampflokomotiven. Diese Funktion simuliert den Rauch des Kesselfeuers und ist auch im Stand aktiv. Er kann u.a. über einen Kontaktpunkt abgestellt werden, z.B. um aus Lokhalllen austretenden Rauch zu vermeiden. Als Rauch werden Rauchwolken-Modelle benutzt, die von der Lok durch den Schornstein ausgestoßen werden.
[Vehicle_SideSteam_01] Rauch Rauchfunktion für Dampfstrahl (Überdruckabbau): Diese Art des Dampfes sieht man vorwiegend bei Dampflokomotiven beim Abbau des Überdrucks. Der Dampfstrahl wird zunächst mit großem Druck abgelassen (schnell), der im Laufe der Zeit nachlässt. Diese Art des Dampfes wird bei langsam fahrenden oder stehenden Rollmaterialien zu sehen sein. Nach einer Minute wird auch dieser Dampf automatisch abgestellt, wenn das Rollmaterial nicht wieder in Bewegung gesetzt wird.
[Vehicle_Whistle_01] Rauch Dampf und Sound der Lok-Pfeife: Dieser Dampfaustritt simuliert die Lok-Pfeife bei Dampflokomotiven und wird in der Sektion Rauch definiert. Das zugehörige Schlüsselwort heißt in dem Fall Pfeifen(). Es kann durch das Tastenkürzel [H] oder durch Kontaktpunkt ausgelöst werden.
[Model_Smoke_01] Rauch Rauch für Immobilien und Gleisobjekte
Parameter für alle Rauchfunktionen
Pos = 330.0,-44.0,430.0 PosX (999), PosY (999), PosZ (999) Die Position in cm, an der der Rauch entstehen soll.
Dir = 0.0,0.707107,0.707107 DirX (9), DirY (9), DirZ (9) Richtung des Rauchs/Dampfstrahls; Werte können positiv oder negativ sein.

Der Parameter DirY unterliegt dem Einfluss des Windes und wird von diesem entsprechend umgelenkt. Achsrichtungen bezogen auf die Fahrtrichtung: +x weist nach vorne / +y weist nach links / +z weist nach oben. Diese Richtungen können durch einen negativen Wert für E1_Velocity umgekehrt werden. Einzugeben sind die Richtungsanteile in den Achsrichtungen (z. B. 0.0,0.0,0.1 = senkrecht aufsteigend / -1.0,0.0,0.0 = strömt gegen die Fahrtrichtung / 0.5,0.0,0.5 = strömt unter 45° nach oben und hinten usw.). Die Werte müssen mindestens eine Stelle nach dem Punkt (Dezimaltrenner) haben, sie kann auch 0 sein.

SparkPower = 0.0 Stärke des Funkenflugs im Rauch.
E1_EjectFrq = 45.0 Ejakulationsfrequenz (999) Anzahl Rauchpartikel, die maximal pro Sekunde ausgestoßen werden können. Mindestwert: 0.14.
E1_Velocity = 0.1680 Steiggeschwindigkeit (999) Geschwindigkeit in cm/sec, mit der der Rauch aufsteigen soll. Bei negativen Werten sinkt der Rauch nach unten (siehe auch Parameter Dir).
E1_Growth = 15.0 Wachstumsfaktor (9.9) Faktor, mit dem die Wolke pro Sekunde wachsen soll, z. B. 1.02. Werte kleiner als 1 bedeuten eine Schrumpfung. Die Rauchwolke kann maximal auf das Dreifache vergrößert werden.
E1_LifeTime = 0.850 Auflösungszeit (9.9) Lebensdauer der Rauchwolke
E1_SrcDiffuse = 0x60808080 Hex-Wert der Farbe des Rauches bei der Geburt. 0x am Anfang bedeutet Hexwert; die nachstehenden Zahlen 608080 sind der Farbwert (R,G,B) und die Letzte Zahl 80 der Farbwert des Alpha-Kanals (weil es etwas durchsichtig ist).

Das erste Ziffernpaar ist der Wert für die Durchsichtigkeit des Rauchs: 00 ist völlig durchsichtig (unsichtbar), 99 ist praktisch undurchsichtig. Die nächsten 3 Ziffernpaare legen die Farbcodes für RGB (jeweils von 00-99) fest.

E1_DstDiffuse = 0x808080 Hex-Wert der Farbe des Rauches bei seinem Tod (Auflösung) - s.o.
E1_DiffuseMlt = 2.0 Wert der Geschwindigkeit des Farbübergangs von der Geburt bis zum Tod. Da die Lebensdauer unterschiedlich sein kann, ist der Wert ein Multiplikator. 0.5 bedeutet keinen Farbübergang von E1_SrcDiffuse zu E1_DstDiffuse, weil die zweite Farbe nicht erreicht wird.

1.0: Der Farbübergang dauert die komplette Lebensdauer . 2.0: Der Farbübergang findet bereits nach der Hälfte der Lebensdauer statt. Der Rauch hat also schon in der Mitte der Rauchfahne eine andere Farbe.

E1_Scale = 1.0 Skalierungsfaktor des Rauchs. Hinweis: Die maximale Anzahl Rauchpartikel mit insgesamt 300 ist sehr wenig; wer mehr Rauch haben möchte, kann sich mit der Erhöhung des Wertes für Scale behelfen.
E1_BrightAtNight = 0 Helligkeit bei Nacht Helligkeit des Rauchs bei Dunkelheit. Positive Werte erhellen den Rauch, negative Werte verdunkeln ihn. Der Effekt ist nicht sehr stark.
E1_Pictures = 5 Bild (9) Gibt die Art des Rauches an - siehe dazu auch den Abschnitt Model_ParticleTex - Laut Model_ParticleTex sind 16 Varianten möglich, nach der Darstellung in der Textur SysSmokeFire jedoch nur 15 (?).
   (1)         (2)         (3)         (4)         (5)        (6)         (7)         (8)         (9)       (10)        (11)       (12)       (13)       (15)

(ToDo: Bild verlinken)

Funkenflug

[Vehicle_Spark_01] Funkenflug: Funken können beim Beschleunigen und Bremsen durch die Reibung des Radreifens auf der Schiene entstehen; Funken können aber auch mit dem Rauch aus dem Schormstein einer Dampflokomotive kommen.
Pos = -610.0,-75.0,1.0 PosX (999), PosY (999), PosZ(999) Gibt die Position in cm an.
Dir = 1.0,0.0,0.0 DirX (9), DirY (9), DirZ (9) Gibt die Richtung des Dampfstrahls an; Werte können positiv oder negativ sein.

Der Parameter DirY unterliegt dem Einfluss des Windes und wird diesem entsprechend umgelenkt.||

Power = 2.0 Funken (0.1) Stärke des Funkenfluges; gültige Werte sind 0.1 bis 1.
Type
Axis = 19 Nummer der Achse. Um die Nummer abzulesen kann der Dialog Bewegen der Achse im Home-Nostruktor aufgerufen werden. Dort wird der Achsenname gesucht und die zutreffende Nummer hier eingetragen.
[Goods_Box] Definiert die Umgrenzung aller im Modell vorhanden Achsen für die Funktion beladbares Modell.
Axis00_Min = -640.0,-138.0,91.0 Legt die Grenze zu den Kollisionskanten fest. Es muss zunächst für jede Achse die dazugehörige Achsennummer ermittelt werden. Für jede Achse werden anschließend einzeln die Boxumgrenzungen übertragen. Hinweis: Falsche Werte können dazu führen,

dass das Ladegut durch Bordwände ragt. Das hier angeführte Beispiel einer sys-ini gilt für einen beladbaren offenen Hochbordgüterwagen.

Axis00_Max = 640.0,138.0,106.0
Axis01_Min = -154.0,-114.0,25.0
Axis01_Max = 154.0,114.0,101.0
Axis02_Min = -50.0,-50.0,-90.0
Axis02_Max = 50.0,50.0,90.0
Axis03_Min = -50.0,-50.0,-90.0
Axis03_Max = 50.0,50.0,90.0
Axis04_Min = 154.0,114.0,101.0
Axis04_Max = 154.0,114.0,101.0
Axis05_Min = -50.0,-50.0,-90.0
Axis05_Max = 50.0,50.0,90.0
Axis06_Min = -50.0,-50.0,-90.0
Axis06_Max = 50.0,50.0,90.0
Axis07_Min = 0.0,0.0,0.0
Axis07_Max = 0.0,0.0,0.0
Axis08_Min = -26.0,110.0,0.0
Axis08_Max = 0.0,110.0,118.0
Axis09_Min = -26.0,110.0,0.0
Axis09_Max = 0.0,110.0,118.0
Axis10_Min = -650.0,-152.0,81.0
Axis10_Max = 650.0,138.0,325.0
Axis11_Min = -650.0,-152.0,81.0
Axis11_Max = 650.0,138.0,325.0
Axis12_Min = 637.0,-151.0,48.0
Axis12_Max = 702.0,151.0,325.0
Axis13_Min = 702.0,-151.0,48.0
Axis13_Max = 637.0,151.0,325.0

Wasser

[Model_Water_01] Wasser Parameter für einen Wasserstrahl (z.B. Feuerwehr). Für Wasser ist auch der Sektor Model_ParticleTex erforderlich
Axis = 12 Angabe der Wasserachse im Modell (z.B _Wasser_12 => = 12)
Sound = Geräusch des Wasserstrahls
SoundActivate = 0.0 Abstand in Meter, wie weit von der Quelle das Geräusch zu hören ist.
E1_EjectFrq = 20.0 Anzahl der Wasserpartikel, die maximal pro Sekunde ausgestoßen werden können, Mindestwert 0.14.
E1_Velocity = 1.750 Geschwindigkeit in cm/sec, mit der das Wasser aufsteigen soll.
E1_Growth = 2.0 Faktor, mit dem der Wasserstrahl pro Sekunde wachsen soll, z.B. 1.02. Werte kleiner als 1 bedeuten eine Schrumpfung. Der Wasserstrahl kann maximal auf das Dreifache vergrößert werden (???).
E1_LifeTime = 4.50 Lebensdauer des Wasserstrahls
E1_SrcDiffuse = 0x80707080 Hex-Wert der Farbe des Wassers bei der "Geburt". 0x am Anfang bedeutet: Hexwert. Die nachstehenden Zahlen 608080 sind der Farbwert (R,G,B) und die letzte Zahl 80 der Farbwert des Alpha-Kanals (weil es etwas durchsichtig ist).

Hinweis: Nach Versuchen scheint das erste Ziffernpaar der Wert für die Durchsichtigkeit zu sein (00 ist völlig durchsichtig, also unsichtbar; 99 ist praktisch undurchsichtig. Die nächsten 3 Ziffernpaare bedeuten die Farbcodes für RGB (jeweils von 00-99).

E1_DstDiffuse = 0x787888 Hex-Wert der Farbe des Wassers bei seinem "Tod" (Auflösung) - s.o.
E1_DiffuseMlt = 2.0 Wert der Geschwindigkeit des Farbübergangs von der "Geburt" bis zum "Tod". Da die Lebensdauer unterschiedlich sein kann, ist E1_DiffuseMlt ein Multiplikator. Würde hier 0.5 stehen, so würde der Farbübergang von E1_SrcDiffuse zu E1_DstDiffuse nicht wirklich stattfinden, weil die zweite Farbe nicht erreicht würde.

1.0 bedeutet, dass der Farbübergang die komplette Lebensdauer dauert. 2.0 bedeutet, dass der Farbübergang bereits nach der Hälfte der Lebensdauer stattfinden wird, das Wasser also schon in der Mitte des Wasserstrahls eine andere Farbe haben wird.

E1_Scale = 0.50 Skalierungsfaktor des Wasserstrahls; Hinweis: Die maximale Anzahl Wasserpartikel mit insgesamt 300 ist sehr wenig; wenn mehr Wasser gewünscht ist, können Sie die den Wert für Scale erhöhen.
E1_BrightAtNight = 0 Helligkeit des Wasserstrahls bei Dunkelheit; 1 =sichtbar; 2 = unsichtbar.
E1_Pictures = 13 Gibt die Art des Wasserstrahls an - siehe dazu auch den Abschnitt [Model_ParticleTex]. Hinweis: lt. Model_ParticleTex sind 16 Varianten möglich, nach der Darstellung in der Textur SysSmokeFire jedoch nur 15 (?) (Frage des Lektors: Liegt hier ein Kopierfehler aus der Rauch-Abteilung vor?)
   (1)         (2)         (3)         (4)         (5)        (6)         (7)         (8)         (9)       (10)        (11)       (12)       (13)       (15)||

Schutt

[Model_Debris_01] Schüttgut (z.B. Schotter) Parameter für Schüttgut - dafür ist auch der Sektor Model_ParticleTex erforderlich.
Axis = 2 Angabe der Schüttgutachse im Modell
Sound " = "*.wav" Geräusch des Ausschüttens
SoundActivate = 0.0 (???)
E1_EjectFrq = 40.0 Anzahl Schüttgutpartikel, die maximal pro Sekunde ausgestoßen werden können, Mindestwert 0.14.
E1_Velocity = 0.50 Geschwindigkeit in cm/sec, mit der Schüttgut bewegt werden soll.
E1_Growth = 2.0 Faktor, mit dem das Schüttgut pro Sekunde wachsen soll, z.B. 1.02. Werte kleiner als 1 bedeuten eine Schrumpfung. Die Schüttgutentladung kann maximal auf das Dreifache vergrößert werden (???).
E1_LifeTime = 0.3750 Lebensdauer der Bewegung des Schüttguts
E1_SrcDiffuse = 0x505a5a5a Wert der Geschwindigkeit des Farbübergangs von der "Geburt" bis zum "Tod". Da die Lebensdauer unterschiedlich sein kann, ist E1_DiffuseMlt ein Multiplikator. Würde hier 0.5 stehen, so würde der Farbübergang von E1_SrcDiffuse zu E1_DstDiffuse nicht wirklich stattfinden, weil die zweite Farbe nicht erreicht würde.

1.0 bedeutet, dass der Farbübergang die komplette Lebensdauer dauert. 2.0 bedeutet, dass der Farbübergang bereits nach der Hälfte der Lebensdauer stattfinden wird, das Schüttgut also schon in der Mitte des Schüttens eine andere Farbe haben wird.

E1_DstDiffuse = 0x5a5a5a Hex-Wert der Farbe des Schüttguts am Ende der Bewegung - s.o.
E1_DiffuseMlt = 8.0 Geschwindigkeit des Farbübergangs während der Schüttgutbewegung. Da die Lebensdauer unterschiedlich sein kann, ist dies weder ein Wert in Sekunden, noch in Prozenten, sondern ein Multiplikator. Würde hier 0.5 stehen, so würde der Farbübergang von E1_SrcDiffuse zu E1_DstDiffuse nicht wirklich stattfinden, weil die zweite Farbe nicht erreicht würde.

1.0: Der Farbübergang dauert über die komplette Lebensdauer . 2.0: Der Farbübergang erfolgt bereits nach der Hälfte der Lebensdauer.

E1_Scale = 1.0 Skalierungsfaktor des Schüttens. Anmerkung: Die maximale Anzahl Partikel mit insgesamt 300 ist sehr wenig. Wenn das nicht ausreicht, können Sie den Wert für Scale erhöhen.
E1_BrightAtNight = 0 Helligkeit des Schüttguts bei Dunkelheit (was sagt Faktor aus ???).
E1_Pictures = 11 Gibt die Art der Schüttgutbewegung an - siehe dazu auch den Abschnitt [Model_ParticleTex]. Hinweis: lt. Model_ParticleTex sind 16 Varianten möglich, nach der Darstellung in der Textur SysSmokeFire jedoch nur 15 (?). (Wieder Kopierfehler? HW1)
   (1)         (2)         (3)         (4)         (5)        (6)         (7)         (8)         (9)       (10)        (11)       (12)       (13)       (15)"||C
IncludeSmoke = 1
[Model_IncludeSmoke_01] Staub Parameter für Staubaufwirbelung - dafür ist auch der Sektor Model_ParticleTex erforderlich.
E1_EjectFrq = 3.0 Anzahl der Staubpartikel, die maximal pro Sekunde ausgestoßen werden können, Mindestwert 0.14.
E1_Velocity = 100.0 Geschwindigkeit in cm/sec, mit der der Staub aufsteigen soll
E1_Growth = 2.0 Faktor, mit dem die Wolke pro Sekunde wachsen soll, z.B. 1.02. Werte kleiner als 1 bedeuten eine Schrumpfung. Die Rauchwolke kann maximal auf das Dreifache vergrößert werden.
E1_LifeTime = 1.0 Lebensdauer der Staubwolke
E1_SrcDiffuse = 0x505a5a5a Wert der Geschwindigkeit des Farbübergangs von der "Geburt" bis zum "Tod". Da die Lebensdauer unterschiedlich sein kann, ist E1_DiffuseMlt ein Multiplikator. Würde hier 0.5 stehen, so würde der Farbübergang von E1_SrcDiffuse zu E1_DstDiffuse nicht wirklich stattfinden, weil die zweite Farbe nicht erreicht würde.

1.0 bedeutet, dass der Farbübergang die komplette Lebensdauer dauert. 2.0 bedeutet, dass der Farbübergang bereits nach der Hälfte der Lebensdauer stattfinden wird, der Staub also schon in der Mitte des Vorgangs eine andere Farbe haben wird.

E1_DstDiffuse = 0x5a5a5a Hex-Wert der Farbe der Staubwolke bei ihrem Tod (Auflösung).
E1_DiffuseMlt = 2.0 Wert der Geschwindigkeit des Farbübergangs von der "Geburt" bis zum Tod. Da die Lebensdauer unterschiedlich sein kann, ist es weder ein Zeitwert noch ein Prozentwert, sondern ein Multiplikator. 0.5 bedeutet z. B. keinen wirklichen Farbübergang von E1_SrcDiffuse zu E1_DstDiffuse, weil die zweite Farbe nicht erreicht werden könnte.

1.0 bewirkt, dass der Farbübergang die komplette Lebensdauer dauert. 2.0 bewirkt, dass der Farbübergang bereits nach der Hälfte der Lebensdauer stattfinden wird, der Rauch also schon in der Mitte der Rauchfahne eine andere Farbe hat.

E1_Scale = 1.0 Skalierungsfaktor des Staubs; Anmerkung: die maximale Anzahl Staubpartikel mit insgesamt 300 ist sehr wenig; wer mehr Staub haben möchte kann sich mit der Erhöhung des Wertes für Scale behelfen.
E1_BrightAtNight = 0 Helligkeit des Staubs bei Dunkelheit (was sagt Faktor aus ???)
E1_Pictures = 1 Gibt die Art der Staubwolke an - siehe dazu auch den Abschnitt [Model_ParticleTex]. Hinweis: lt. Model_ParticleTex sind 16 Varianten möglich, nach der Darstellung in der Textur SysSmokeFire jedoch nur 15 (?).
   (1)         (2)         (3)         (4)         (5)        (6)         (7)         (8)         (9)       (10)        (11)       (12)       (13)       (15)

Rauch/Funken/Schutt - allgemein

[Model_ParticleTex] Definition für Rauch, Wasser, Schüttgut, Staub. Hinweis: diese Definitionen nicht verändern!
TexName = SysSmokeFire \Resourcen\Paralles\SysSmokeFire.dds ist die Standard-Rauch-/Feuer-Textur.
Sort = 1 ???
TexUV1 = 0.000244,0.0,0.062256,1.0,1.0 TexUV1-TexUV16: Parameter zur Ermittlung des Bilds für Rauch, Wasser und Staub aus der Texturdatei SysSmokeFire.dds.
TexUV2 = 0.062744,0.0,0.124756,1.0,1.0
TexUV3 = 0.125244,0.0,0.187256,1.0,1.0
TexUV4 = 0.187744,0.0,0.249756,1.0,1.0
TexUV5 = 0.250244,0.0,0.312256,1.0,1.0
TexUV6 = 0.312744,0.0,0.374756,1.0,1.0
TexUV7 = 0.375244,0.0,0.437256,1.0,1.0
TexUV8 = 0.437744,0.0,0.499756,1.0,1.0
TexUV9 = 0.500244,0.0,0.562256,1.0,1.0
TexUV10 = 0.562744,0.0,0.624756,1.0,1.0
TexUV11 = 0.625244,0.0,0.687256,1.0,1.0
TexUV12 = 0.687744,0.0,0.749756,1.0,1.0
TexUV13 = 0.750244,0.0,0.812256,1.0,1.0
TexUV14 = 0.812744,0.0,0.874756,1.0,1.0
TexUV15 = 0.875244,0.0,0.937256,1.0,1.0
TexUV16 = 0.937744,0.0,0.999756,1.0,1.0


[Track] Spline-Definition
Id_Code = 334 Spline-ID
HeightOG = 60.0 Fahrweghöhe in Zentimeter . 60 cm gilt für Eisenbahngleise, sonstige Splines: = 0
SwitchOffs = 180.0 Entfernung der Weichenlaterne zur Spline-Mitte in Zentimeter (ist wegen der unterschiedlichen Spline-Breiten, z.B. für Normalspur, Schmalspur, Straßen etc. erforderlich).
Tunnel = 1 Der Rauchpartikel-Ausstoß auf diesem Gleis wird unterbunden (damit z.B. Dampfloks nicht durch die Tunnelwände rauchen können).
NoTexAlign = 1 Verhindert das Kappen der Textur in den Splines.
[Model_SignalFunc] [Func] Signalfunktion für alle Signale. Hinweis: Der Einsatz von Bewegungsachsen bei Lichtsignalen ist nicht erwünscht.
Pos = 3 Gibt die Anzahl der möglichen Signalbegriffe an.
POS01_FN Funktion des 1. Begriffes
= 1 Fahrt
= 2 Halt
= 1xxx - xxx Geschwindigkeit bis Vmax (z.B. POS01 = 1040 => Vmax ist 40 km/h)
= 2xxx - xxx Geschwindigkeit ab Vmin
POS02_FN = .... Funktion des zweiten Begriffes
POS03_FN = .... Funktion des dritten Begriffes usw.

Signale und ihre Achsen

Die Bezeichnung der folgenden Achsen mit Signal, Signal1, Signal2 usw. bis Signal9 ist zwingend vorgeschrieben. Natürlich müssen nur so viele Achsen definiert werden wie das Signal Begriffe hat.
[Model-Signal] [Signal] Erste Achse des Signals (MS = Mainsingal, PS = Presignal; die Winkelangaben sind Beispiele!)
Pos01_MS = 0.0 POS01_HS =0.0 Winkel der Signalachse der Funktion 1 für das Hauptsignal
Pos01_PS  = 135.0 POS01_VS = 135.0 Winkel der Signalachse der Funktion 1 für das Vorsignal
Pos02_MS = 0.0 POS02_HS = 0.0 Winkel der Signalachse der Funktion 2 für das Hauptsignal
Pos02_PS = 90.0 POS02_VS = 90.0 Winkel der Signalachse der Funktion 2 für das Vorsignal
Pos03_MS = 45.0 POS03_HS = 45.0 Winkel der Signalachse der Funktion 3 für das Hauptsignal
Pos03_PS = 135.0 POS03_VS = 135.0 Winkel der Signalachse der Funktion 3 für das Vorsignal

[Model-Signal1]|| ||[Signal1]||Zweite Achse des Signals

Pos01_MS = 0.0 POS01_HS =0.0 Winkel der Signalachse der Funktion 1 für das Hauptsignal
Pos01_PS  = 135.0 POS01_VS = 135.0 Winkel der Signalachse der Funktion 1 für das Vorsignal
Pos02_MS = 0.0 POS02_HS = 0.0 Winkel der Signalachse der Funktion 2 für das Hauptsignal
Pos02_PS = 90.0 POS02_VS = 90.0 Winkel der Signalachse der Funktion 2 für das Vorsignal
Pos03_MS = 45.0 POS03_HS = 45.0 Winkel der Signalachse der Funktion 3 für das Hauptsignal
Pos03_PS = 135.0 POS03_VS = 135.0 Winkel der Signalachse der Funktion 3 für das Vorsignal
[Model-Signal2] [Signal1] Zweite Achse des Signals
Pos01_MS = 0.0 POS01_HS =0.0 Winkel der Signalachse der Funktion 1 für das Hauptsignal
Pos01_PS  = 135.0 POS01_VS = 135.0 Winkel der Signalachse der Funktion 1 für das Vorsignal
Pos02_MS = 0.0 POS02_HS = 0.0 Winkel der Signalachse der Funktion 2 für das Hauptsignal
Pos02_PS = 90.0 POS02_VS = 90.0 Winkel der Signalachse der Funktion 2 für das Vorsignal
Pos03_MS = 45.0 POS03_HS = 45.0 Winkel der Signalachse der Funktion 3 für das Hauptsignal
Pos03_PS = 135.0 POS03_VS = 135.0 Winkel der Signalachse der Funktion 3 für das Vorsignal
Pos01_MS = 1,0,0,0,0,0,0,0,0,0 Um eine Licht-ID für eine Signalfunktion anzusprechen, wird der Leuchtzustand notiert. Da es 10 Signal-IDs gibt, werden diese der Reihe nach mit einem Komma getrennt notiert. Dabei ist 0 (Null) der ausgeschaltete und 1 (Eins) der eingeschaltete Zustand der jeweiligen Licht-ID. Die ersten 8 Licht-IDs leuchten konstant, die letzten 2 blinken abwechselnd.
Pos01_PS = 1,0,0,0,0,0,0,0,0,0
Pos02_MS = 0,1,0,0,0,0,0,0,0,0
Pos02_PS = 0,1,0,0,0,0,0,0,0,0
Pos03_MS = 0,0,1,0,0,0,0,0,0,0
Pos03_PS = 0,0,1,0,0,0,0,0,0,0
[Model_SignalFunc] In der externen Modell.ini können die vorgegebenen Bezeichnungen der Signalstellungen frei bezeichnet werden.
Pos01_Fn_Name_GER = "FG-grün/PKW-rot" EEP Standardwerte sind Halt, Fahrt etc.
Pos02_Fn_Name_GER = "FG-rot/PKW-rot"
Pos03_Fn_Name_GER = "FG-rot/PKW-rot/gelb"
Pos04_Fn_Name_GER = "FG-rot/PKW-grün"
Pos05_Fn_Name_GER = "FG-rot/PKW-gelb"
Pos06_Fn_Name_GER = "FG-rot/PKW-rot""


Beispieldateien

Ellok

1 a-system-ini bsp-e-lok-gesamtansicht.jpg

Dampflok

Baureihe BR 41; Modellautor: Ralph Goerbing ‒ RG2

Datei:1 a-system-ini bsp-dampflok br41-editiert.png


Gleisstil/Spline

1 a-system-ini bsp-track.jpg

Immobilie mit Schornsteinrauch

1 a-system-ini bsp-immo.png

Geigenbauerhaus_HW1.3dm (Free-Modell); Modellautor: Hans-Ulrich Werner ‒ HW1

Modell mit Wasserfunktion

Wasserkran_Einheitsbauart2; Modellautor: Stefan Gothe ‒ SG1

1 a-system-ini wasserkran sg1.jpg


Zur Startseite